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THE recent paper by Will & Powell (1991) shows that a 
least median of squares (LMS) regression is a realistic 
approach to paleostress estimation. Their paper has 
inspirational value as it causes those of us working on 
paleostress to rethink the direction of our work. How- 
ever, I wish to raise several problems concerning their 
method. 

CHOICE OF INPUT PARAMETERS AND 
RESIDUALS 

The root of the weaknesses perceived in Will & Powell 
(1991) is their uncritical use of procedural elements 
taken from previous publications. In particular, they 
have insufficient regard to the geometrical interdepen- 
dence or independence of parameters. This is seen in 
their choice of residuals to be minimized in the LMS 
procedure. Their use of the differences between field 
measurements and their predicted values neglects the 
influence of the value of one of these parameters on the 
accuracy of another. Specifically, as dip (p of Will & 
Powell 1991) decreases towards zero, the value of the 
dip azimuth (their d) becomes less determinate until 
completely indeterminate at p = 0. This is no problem in 
itself; as we lose confidence in the accuracy of measured 
d, so the sensitivity of the paleostress estimate to this 
value diminishes also. However, the pitch angle (their i) 
is measured from assumed strike. So an otherwise be- 
nign error in d, and hence strike, induces a like error of 
opposite sign in i. For fault planes of small dip, not only 
may the procedure of Will & Powell (1991) register a 
large residual of d from an essentially good field obser- 
vation, but a large residual of i results even if the 
predicted direction of resolved shear stress coincides 
with the observed striation direction. Their LMS pro- 
cedure will then search for a reduced residual of i by 
inducing misfit between the predicted and observed 
directions. The resulting paleostress estimate giving 
least median of squares of these residuals may not be the 
estimate which best fits the observations. 

For confidence in the procedure, the magnitude of a 
residual must be a measure of the misfit between the 
prediction and the field observation. This can be 
achieved by matching the choice of residuals more 

carefully to the geometry concerned, specifying para- 
meters of like status (rather than differing in their degree 
of mutual dependence) which are not liable to indeter- 
minacy. The raw field measurements are poorly suited in 
this respect. The geometry of this problem is one of 
angular differences in spherical orientations, with the 
particular mode of mutual dependences which that 
implies. The optimu m choice of procedure is to search 
the least median of (1-cosine) of angular misfit, for three 
orthogonal axes per observation. The sum of this 
measure over the three axes is invariant under change of 
axes. 

In problems with mutually independent parameters, 
geometrically represented by Cartesian co-ordinates, it 
is the sum of squares of the co-ordinate differences 
which is invariant under change of axes, being the square 
of absolute distance between two points. This invariance 
of sum of squares is the prime justification for choosing 
to search the 'least median of squares', rather than least 
median of any other power greater than unity, when 
dealing with independent parameters. Those wishing to 
retain a formulation in squares of residuals for this 
paleostress estimation may take comfort from the fact 
that (1-cosine) equates to twice the square of the sine of 
the half-angle of misfit. However, it is its invariance 
which justifies this function, not the form in which we 
choose to specify it. The (1-cosine) form is generally the 
more convenient. 

The optimum choice of functions to minimize is 
(1 - n. fi), (1 - s. ~) and (1 - b. I~), where b is the unit 
vector perpendicular, to n and s, which are calculated 
from field observations, and '^' indicates the value pre- 
dicted from trial of a stress tensor, T. 

THE GEOMETRICAL CONSTRAINT 

The other matters of concern arise from the choice by 
Will & Powell (1991) of what they consider the con- 
straint equation, taken from Angelier et al. (1982). The 
form in which this equation is introduced: 

s.  T .  n = + ~ / ( T -  n) .  (T-  n) - (n .  T .  n)  2 

betrays its origin. The right-hand side of the equation is, 
by Pythagoras, the length of the normal projection of the 
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vector (T-[]) on the fault pla[]e. Comparison with an 
i[]depe[]de[]t estimate of the mag[]itude of the shear 
stress would be a good test of the estimated T. However,  
no such i[]depe[]dent estimate is available. The left-hand 
side of the equation is equally derivative from (T. n), 
being the mag[]itude of its perpe[]dicular projection 
directly onto the line of the observed shear, s. Provided 
the projection directions of the two projections coincide 
(lln), the mag[]itudes of each side of the equation will be 
identical regardless of  their value. So, despite having a 
form of equating mag[]itudes, this constraint reduces to 
being the orientational requireme[]t that (T. n) be co- 
pla[]ar with n and s. Also. whereas the sign of the left 
side may be + or - .  that of the right is always +.  They 
will only equate if the polarity of the projectio[] of (T. n) 
onto s agrees with the observed shear sense. 

The above equation is by no means the only way of 
specifying the requirement that (T- n) be coplanar with [] 
and s. Two alter[]atives will be given here, followed by a 
reconsideration of the shear sense constraint. 

Will & Powell (1991) state that the number of con- 
straint equations being only a third of the number of 
measureme[]ts "precludes the use of conventional 
LMS",  there being n equations for 3n measurements if n 
is the number of field observations. However ,  if one 
wants 3n equations, it is simple to enforce coplanarity by 
equating the vector (T. n) with the sum of its []ormal and 
shear compone[]ts: 

T . n  = ( s .T .n ) s  + ( n . T . n ) n  

or using the star (*) product of De Paor (1990), simply: 

Tn = s*Tn + n*Tn. 

This form is slightly simpler than the constraint used 
by Will & Powell (1991) and otherwise equally accept- 
able. As a vector equatio[], it can be expanded as three 
equatio[]s in terms of Cartesian co-ordinates, one for 
each of the three axial directio[]s of the co-ordinate 
frame. Each of these requires that the component  of 
(T. n) along its axial direction equate to the sum of the 
components of the shear stress and the normal stress in 
that direction. So, 3n equations are to hand, if optimisa- 
tion of the LMS procedure should so require. 

Probably a better alternative is to settle for n 
equations which are simple and which do not purport to 
be a comparison of magnitudes which are, in reality, 
u[]k[]own. The obvious suggestion is: 

b . T - n  = 0. 

where b is the unit vector perpendicular to n and s. 

SHEAR SENSE AND SHEAR STRESS 
MAGNITUDE 

The two alter[]ative co[]strai[]t equations suggested 
above take no account of shear sense, whereas that used 
by Will & Powell (1991) does. This issue is more fruit- 
fully co[]sidered quantitatively, in terms of the magni- 
tude of  the shear stress acti[]g on a fault plane, and what 

constitutes the most appropriate assumed lower limit (or 
' threshold' value) for generating fault movement.  The 
equatio[]s suggested above do not apply a threshold; 
[]egative and near-zero stresses are treated as equal to 
large positive shear stresses in their ability to generate 
movement of the observed se[]se. The equation used by 
Will & Powell (1991) applies a threshold value of zero; 
any shear stresses, however small, are co[]sidered 
capable of ge[]erating fault moveme[]t, provided they 
are positive. Neither formulation is realistic, but "Does 
it matter?".  

A lack of limit to the acceptable range of shear stress 
mag[]itude ought to be of no practical conseque[]ce. 
Some falsely acceptable observations can always arise 
from mismeasurement of outliers, and will go undetec- 
ted. Lack of co[]strai[]t on shear mag[]itude merely adds 
another way in which occasio[]al falsely acceptable ob- 
servations may be produced. A major reason for favour- 
ing the LMS approach used by Will & Powell (1991) is 
that a least median estimate is not easily corrupted by a 
small proportion of falsely accepted observations. 

Nevertheless, if no threshold is applied, a fear will 
remai[] that the number of observations of inappropriate 
shear stress may be sufficie[]t to affect the paleostress 
estimate. So, let us consider which range of potential 
observations co[]stitutes the greater threat in Will and 
Powell's LMS method, those giving predicted coplanar 
(T .n)  vectors of negative shear stress or those of low 
positive value? The al and 03 directions of the former 
would have to reside in the fields of 03 and ~rl, respect- 
ively, as estimated at the start of their procedure. If 
these fields have already been well defined, the number 
of these observations, acceptable but for predicted nega- 
tive shear stress (wro[]g shear sense), must be small. 
Therefore,  in the co[]text of the complete procedure 
adopted by Will & Powell (1991), it is the other group, 
that is to say observations giving predicted shear stress of 
correct sign but inappropriately small magnitude, which 
pose a completely hidden danger to the paleostress 
estimation. That is why, in terms of their procedure in 
particular, the complexity of incorporating a restriction 
on shear sense but not on small positive shear stresses 
has no significant advantage over the simpler formu- 
lation of 'b- T.  [] = 0'. 

FEASIBILITY OF APPLYING A THRESHOLD 
SHEAR STRESS 

If one wishes to apply a shear stress threshold of some 
positive value k, rather than of zero. this can be done by 
substituting ( T . n - k s )  for (T .n )  throughout the 
equation used by Wilt & Powell (1991), to give: 

s. (T .n  - ks) = 

+ ~/(T.  n - ks). (T. [] - ks) - (n. (T. n - ks)) 2. 

Such a modificatio[] would appear to be the o[]ly justifi- 
cation for retaini[]g this general form of co[]straint 
equation. Unfortunately,  Will & Powell (1991) have 
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chosen a reduced stress tensor with cosine functions for 
the diagonal elements in their reference frame. This 
reduction scales the other elements of T, and hence any 
appropriate value for k, by a factor which is unpredict- 
able, being highly dependent on principal stress orien- 
tations. Changing the form of reduced stress tensor 
would require such a major change that modifying their 
procedure to include a threshold shear stress is unlikely 
to be worthwhile. 

In the longer term, the inverse problem addressed by 
Will & Powell (1991) should be tackled by a least median 
procedure which assumes appropriate parameters for a 
linear friction law instead of an arbitrary threshold. This 
would permit estimation of both a reduced stress tensor 
and a relative stress difference, such as (ol - o3)/Ol. The 
theoretical foundation for including the frictional con- 

straint has already been laid by C616rier (1988) but 
consideration of it here would take us beyond the scope 
of the present discussion. 

REFERENCES 

Angelier, J., Taranto|a, A., Valette, B. & Manoussis, S. 1982. 
Inversion of field data in fault tectonics to obtain the regional 
stress---1. Single phase fault populations: a new method of comput- 
ing the stress tensor. Geophys. J. R. astr. Soc. 69, 607-621. 

C~l~rier, B. 1988. How much does slip on a reactivated fault plane 
constrain the stress tensor? Tectonics 7, 1257-1278. 

De Paor, D. G. 1990. The theory of shear stress and shear strain on 
planes inclined to the principal directions. J. Struct. Geol. 12, 923- 
927. 

Will, T. M. & Powell, R. 1991. A robust approach to the calculation of 
paleostress fields from fault plane data. J. Struct. Geol. 13,813-821. 


